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Abstract— In this paper, we introduce a modified Kalman
filter that can perform robust, real-time outlier detection in the
observations, without the need for manual parameter tuning by
the user. Robotic systems that rely on high quality sensory data
can be sensitive to data containing outliers. Since the standard
Kalman filter is not robust to outliers, other variations of the
Kalman filter have been proposed to overcome this issue, but
these methods may require manual parameter tuning, use of
heuristics or complicated parameter estimation. Our Kalman
filter uses a weighted least squares-like approach by introducing
weights for each data sample. A data sample with a smaller
weight has a weaker contribution when estimating the current
time step’s state. We learn the weights and system dynamics
using a variational Expectation-Maximization framework. We
evaluate our Kalman filter algorithm on data from a robotic
dog.

I. INTRODUCTION

In order to maintain robust control in robotic systems, a

high quality of sensory data is needed. While data from

sensors such as potentiometers and optical encoders are

easily interpretable in their noise characteristics, other sen-

sors such as visual systems, GPS devices and sonar sensors

often provide measurements populated with outliers. As a

result, robust, reliable detection and removal of outliers is

essential in order to process these kinds of data. For example,

the application domain of legged locomotion is particularly

vulnerable to perceptual data of poor quality, since one

undetected outlier can disturb the balance controller to the

point that the robot loses stability.

An outlier is generally defined as an observation that “lies

outside some overall pattern of distribution” [1]. Outliers

may originate from sensor noise (producing values that fall

outside a valid range), from temporary sensor failures, or

from unanticipated disturbances in the environment (e.g., a

brief change of lighting conditions for a visual sensor).

For real-time applications, storing data samples may not

be a viable option due to the high frequency of sensory

data and insufficient memory resources. In this scenario,

sensor data are made available one at a time and must be

discarded once they have been observed. Hence, techniques

that require access to the entire set of data samples, such

as the Kalman smoother (e.g., [2], [3]), are not applicable.

Instead, the Kalman filter (e.g., [4], [5]) is a more suitable

method, since it assumes that only data samples up to the

current time step have been observed. The Kalman filter

propagation and update equations are recursive and do not

require direct access to previously observed data.

The Kalman filter is a widely used tool for estimating the

state of a dynamic system, given noisy measurement data. It

is the optimal linear estimator for linear Gaussian systems,

giving the minimum mean squared error [6]. Using state

estimates, the filter can also estimate what the corresponding

(output) data are. However, the performance of the Kalman

filter degrades when the observed data contains outliers. To

address this, previous work has tried to make the Kalman

filter more robust to outliers by addressing the sensitivity of

the squared error criterion to outliers [7], [8]. One class of

approaches considers non-Gaussian distributions for random

variables (e.g., [9], [10], [11], [12]), since multivariate Gaus-

sian distributions are known to be susceptible to outliers.

For example, [13] use multivariate Student-t distributions.

However, the resulting estimation of parameters may be quite

complicated for systems with transient disturbances.

Alternatively, it is possible to model the observation and

state noise as non-Gaussian, heavy-tailed distributions to

account for non-Gaussian noise and outliers (e.g., [14], [15],

[16]). Unfortunately, these filters are typically more difficult

to implement and may no longer provide the conditional

mean of the state vector. Other approaches use resampling

techniques (e.g., [17], [18]) or numerical integration (e.g.,

[19], [20]) but these may require heavy computation not

suitable for real-time applications.

Yet another class of methods uses a weighted least squares

approach, as done in robust least squares [21], [22], where

the measurement residual error is assigned some statistical

property. Some of these algorithms fall under the first cat-

egory of approaches as well, assuming non-Gaussian distri-

butions for variables. Each data sample is assigned a weight

that indicates its contribution to the hidden state estimate at

each time step. This technique has been used to produce a

Kalman filter that is more robust to outliers (e.g., [23], [24]).

However, these methods usually model the weights as some

heuristic function of the data (e.g., the Huber function [22])

and often require tuning of threshold parameters for optimal

performance. Using incorrect or inaccurate estimates for the

weights may lead to deteriorated performance, so special

attention and care is necessary when using these techniques

In this paper, we are interested in the problem of iden-

tifying outliers while tracking the observed data using the

Kalman filter. Identifying outliers in the state is different

problem entirely, and this is left for another paper. We

introduce a modified Kalman filter that can detect outliers

in the observed data without the need for parameter tuning
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or use of heuristic methods on the user’s part. This filter

learns the weights of each data sample, as well as the

system dynamics, using an Expectation-Maximization (EM)

framework [25]. For ease of analytical computation, we

assume Gaussian distributions for variables and states. We

illustrate the performance of this robust Kalman filter on

robotic data, comparing it with other robust approaches and

demonstrating its effectiveness at detecting outliers in the

observations.

II. OUTLIER DETECTION IN THE KALMAN FILTER

Let us assume we have data {zk}
N

k=1, observed over N

time steps, and the corresponding hidden states as {θk}
N

k=1

(where θk ∈ <d2×1 and zk ∈ <d1×1). Assuming that the

system is time-invariant, the Kalman filter system equations

are:

zk = Cθk + vk

θk = Aθk−1 + sk

(1)

where C ∈ <d1×d2 is the observation matrix, A ∈ <d2×d2

is the state transition matrix, vk ∈ <d1×1 is the observation

noise at time step k, and sk ∈ <d2×1 is the state noise

at time step k. We assume vk and sk to be uncorrelated

additive mean-zero Gaussian noise, vk ∼ Normal (0,R),
sk ∼ Normal (0,Q), where R ∈ <d1×d1 is a diagonal matrix

with r ∈ <d1×1 on its diagonal, and Q ∈ <d2×d2 is a

diagonal matrix with q ∈ <d2×1 on its diagonal. R and Q

are covariance matrices for the observation and state noise,

respectively. The corresponding Kalman filter propagation

and update equations are, for k = 1, .., N :

Propagation:

θ
′

k = A 〈θk−1〉 (2)

Σ′

k = AΣk−1A
T + Q (3)

Update:

S′

k =
(

CΣ′

kC
T + R

)−1
(4)

K ′

k = Σ′

kC
T S′

k (5)

〈θk〉 = θ
′

k + K ′

k

(

zk − Cθ
′

k

)

(6)

Σk = (I − K ′

kC)Σ′

k (7)

where 〈θk〉
1 is the posterior mean vector of the state θk,

Σk is the posterior covariance matrix of θk, and S′

k is

the covariance matrix of the residual prediction error—all

at time step k. In this problem, the system dynamics (C,

A, R and Q) are unknown, and it is possible to use a

maximum likelihood framework to estimate these parameter

values [26]. Unfortunately, this standard Kalman filter model

considers all data samples to be part of the data cloud and

is not robust to outliers.

A. Robust Kalman Filtering with Bayesian Weights

To overcome this limitation, we introduce a novel

Bayesian algorithm that treats the weights associated with

each data sample probabilistically. In particular, we introduce

1Note that 〈〉 denotes the expectation operator

a scalar weight wk for each observed data sample zk such

that the variance of zk is weighted with wk, as done in

[27]. Gelman et al. [27] consider a weighted least squares

regression model and assume that the weights are known

and given. In contrast, we model the weights to be Gamma

distributed random variables, as done previously in [28] for

weighted linear regression. Additionally, we learn estimates

for the system dynamics at each time step. We choose a

Gamma prior distribution for the weights in order to ensure

they remain positive. The prior distributions are:

zk|θk, wk ∼ Normal (Cθk,R/wk)

θk|θk−1 ∼ Normal (Aθk−1,Q)

wk ∼ Gamma (awk
, bwk

)

(8)

We can treat this entire problem as an Expectation-

Minimization-like (EM) learning problem [25], [29] and

maximize the log likelihood log p(θ1:N ) (otherwise known as

the “incomplete” log likelihood with the hidden probabilistic

variables marginalized out). Due to analytical issues, we only

have access to a lower bound of this measure. This lower

bound is based on an expected value of the “complete”

data likelihood 〈log p (θ1:N , z1:N ,w)〉, formulated over all

variables of the learning problem:

log p (θ1:N , z1:N ,w)

=
∑N

i=1 log p (zi|θi, wi) +
∑N

i=1 log p (θi|θi−1)

+ log p (θ0) +
∑N

i=1 log p (wi)

= 1
2

∑N

i=1 log wi −
N
2 log |R| − N

2 log |Q|

− 1
2

∑N

i=1 wi (zi − Cθi)
T

R−1 (zi − Cθi)

− 1
2

∑N

i=1 (θi − Aθi−1)
T

Q−1 (θi − Aθi−1)

− 1
2 log |Q0| −

1
2

(

θ0 − θ̂0

)T

Q−1
0

(

θ0 − θ̂0

)

+
∑N

i=1 (awi,0) log wi −
∑N

i=1 bwi,0wi + const

(9)

where θ0 is the initial state, θ̂0 is the mean of θ0, Q0 is the

noise variance of θ0, w ∈ <N×1 has coefficients wi (i =
1, .., N ), and z1:N denotes samples {z1, z2, .., zN}. Since

we are considering this problem as a real-time one (i.e. data

samples arrive sequentially, one at a time), we will have

observed only data samples z1:k at time step k. Consequently,

in order to estimate the posterior distributions of the random

variables and parameter values at time step k, we should

consider the log evidence of only the data samples observed

to date, i.e., log p (θ1:k, z1:k,w1:k).
The expectation of the complete data likelihood should

be taken with respect to the true posterior distribution of

all hidden variables Q (w,θ). However, since this is an

analytically intractable expression, we use a technique from

variational calculus to construct a lower bound and make a

factorial approximation of the true posterior [29] as follows:

Q (w,θ) =
∏N

i=1 Q (wi)
∏N

i=1 Q (θi|θi−1) Q(θ0). This fac-

torization of θ considers the influence of each θi from

within its Markov blanket, conserving the Markov property

that Kalman filters, by definition, have. While losing a

small amount of accuracy, all resulting posterior distributions
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over hidden variables become analytically tractable. This

factorial approximation was chosen purposely so that Q(wk)
is independent from Q(θk); performing joint inference of wk

and θk does not make sense in the context of our generative

model. We can derive the final EM update equations from

standard manipulations of Normal and Gamma distributions

and arrive at the following for time step k:

E-step:

Σk =
(

〈wk〉C
T
k R−1

k Ck + Q−1
k

)−1
(10)

〈θk〉 = Σk

(

Q−1
k Ak 〈θk−1〉 + 〈wk〉C

T
k R−1

k zk

)

(11)

〈wk〉 =
awk,0+

1

2

bwk,0+〈(zk−Ckθk)T
R

−1

k
(zk−Ckθk)〉

(12)

M-step:

Ck =
(

∑k

i=1 〈wi〉 zi 〈θi〉
T
) (

∑k

i=1 〈wi〉
〈

θiθ
T
i

〉)

−1

(13)

Ak =
(

∑k

i=1 〈θi〉 〈θi−1〉
T
) (

∑k

i=1

〈

θi−1θ
T
i−1

〉)

−1

(14)

rkm = 1
k

∑k

i=1 〈wi〉
〈

(zim − Ck(m, :)θi)
2
〉

(15)

qkn = 1
k

∑k

i=1

〈

(θin − Ak(n, :)θi−1)
2
〉

(16)

where m = 1, ..., d1, n = 1, ...d2; rkm is the mth coefficient

of the vector rk; qkn is the nth coefficient of the vector qk;

Ck(m, :) is the mth row of the matrix Ck; Ak(n, :) is the

nth row of the matrix Ak; and awk,0 and bwk,0 are prior

scale parameters for the weight wk. Equations (10) to (16)

need to be computed once for each time step k (e.g., [30]

[31]), when the data sample zk becomes available.

Since all sensor data cannot be stored in real-time appli-

cations, but must be discarded soon after it is received, (13)

to (16) need to be re-written in incremental form (i.e., using

only values observed, calculated or used in the current time

step k). We can do this by collecting sufficient statistics in

(13) to (16) and re-writing them as:

Ck =
∑wzθ

T

k

(

∑wθθ
T

k

)

−1

(17)

Ak =
∑θθ

′

k

(

∑θ
′
θ
′

k

)

−1

(18)

rkm =
1

k

[

∑wzz

km −2Ck(m, :)
(

∑wzθ

km

)

+diag
{

Ck(m, :)
(

∑wθθ
T

k

)

Ck(m, :)T
}]

(19)

qkn = 1
k

[

∑θ2

kn −2Ak(n, :)
(

∑θθ
′

kn

)

+diag
{

Ak(n, :)
(

∑θ
′
θ
′

k

)

Ak(n, :)T
}]

(20)

where m = 1, .., d1, n = 1, .., d2, and the sufficient statistics

are:

∑wzθ
T

k = 〈wk〉 zk 〈θk〉
T

+
∑wzθ

T

k−1
∑wθθ

T

k = 〈wk〉
〈

θkθ
T
k

〉

+
∑wθθ

T

k−1

∑θθ
′

k = 〈θk〉 〈θk−1〉
T

+
∑θθ

′

k−1
∑θ

′
θ
′

k =
〈

θk−1θ
T
k−1

〉

+
∑θ

′
θ
′

k−1
∑wzz

km = 〈wk〉 z2
km +

∑wzz

k−1
∑wzθ

km = 〈wk〉 zkmθk +
∑wzθ

k−1,m

∑θ2

kn =
〈

θ2
kn

〉

+
∑θ2

k−1,n
∑θθ

′

kn = 〈θkn〉 〈θk−1〉 +
∑θθ

′

kn

A few remarks should be made regarding the initialization

of priors used in (10) to (12), (17) to (20). In particular, the

prior scale parameters awk,0 and bwk,0 should be selected so

that the weights 〈wk〉 are 1 with some confidence. That is to

say, the algorithm starts by assuming most data samples are

inliers. For example, we can set awk,0 = 1 and bwk,0 = 1
so that 〈wk〉 has a prior mean of awk,0/bwk,0 = 1 with

a variance of awk,0/b2
wk,0 = 1. By using these values, the

maximum value of 〈wk〉 is capped at 1.5. This set of values is

generally valid for any data set and/or application and does

not need to be modified if no prior information regarding

the presence of outliers in the data is available. Otherwise,

if the user has prior knowledge regarding the strong or weak

presence of outliers in the data set (and hence, a good reason

to insert strong biases towards particular parameter values),

the prior scale parameters of the weights can be modified

accordingly to reflect this. Since some prior knowledge about

the observed data’s properties must be known in order to

distinguish whether a data sample is an outlier or part of the

data’s structure, this Bayesian approach provides a natural

framework to incorporate this information.

Secondly, the algorithm is relatively insensitive to the

the initialization of A and C and will always converge to

the same final solution, regardless of these values. For our

experiments, we use C = A = I, where I is the identity

matrix. Finally, the initial values of R and Q should be

set based on the user’s initial estimate of how noisy the

observed data is (e.g., R = Q = 0.01I for noisy data,

R = Q = 10−4I for less noisy data [32]).

B. Relationship to the Kalman Filter

The equations (10) and (11) for the posterior mean and

posterior covariance of θk may not look like the standard

Kalman filter equations in (2) to (7), but with a little

algebraic manipulation, we can show that the model derived

in Section II-A is indeed a variant of the Kalman filter. If

we substitute the propagation equations, (2) and (3), into the

update equations, (4) to (7), we reach recursive expressions

for 〈θk〉 and Σk. By applying this sequence of algebraic

manipulations in reverse order to (10) and (11), we arrive at

1516



the following:

Propagation:

θ
′

k = Ak 〈θk−1〉 (21)

Σ′

k = Qk (22)

Update:

S′

k =

(

CkΣ
′

kC
T
k +

1

〈wk〉
Rk

)

−1

(23)

K ′

k = Σ′

kC
T
k S′

k (24)

〈θk〉 = θ
′

k + K ′

k

(

zk − Ckθ
′

k

)

(25)

Σk = (I − K ′

kCk)Σ′

k (26)

Close examination of the above equations show that (10) and

(11) in the Bayesian model correspond to standard Kalman

filter equations, with modified expressions for Σ′

k and S′

k and

time-varying system dynamics. Σ′

k is no longer explicitly

dependent on Σk−1, since Σk−1 does not appear in (22).

However, the current state’s covariance Σk is still dependent

on the previous state’s covariance Σk−1 (i.e., it is dependent

through the other parameters K ′

k and Ck).

Additionally, the term Rk in S′

k is now weighted. Equa-

tion (12) reveals that if the prediction error in zk is so large

that it dominates the denominator, then the weight 〈wk〉 of

that data sample will be very small. As this prediction error

term in the denominator goes to ∞, 〈wk〉 approaches 0. If

zk has a very small weight 〈wk〉, then S′

k, the posterior

covariance of the residual prediction error, will be very

small, leading to a very small Kalman gain K ′

k. In short,

the influence of the data sample zk will be downweighted

when predicting θk, the hidden state at time step k.

The resulting Bayesian algorithm has a computational

complexity on the same order as that of a standard Kalman

filter, since matrix inversions are still needed (for the cal-

culation of covariance matrices), as in the standard Kalman

filter. In comparison to other Kalman filters that use heuris-

tics or require more involved computation/implementation,

this outlier-robust Kalman filter is principled and easy to

implement.

C. An Alternative Kalman Filter

We explored a variation of the previously introduced

robust Kalman filter. Instead of performing a full Bayesian

treatment of the weighted Kalman filter, we use the standard

Kalman filter equations, (2) to (7), and modify (4) so that

the output variance for zk, Rk, is now weighted—as in our

original model in (8):

S′

k =

(

CkΣ
′

kC
T
k +

1

〈wk〉
Rk

)

−1

(27)

We learn the weights 〈wk〉 using (12) from the robust

Kalman filter and estimate the system dynamics at each

time step using a maximum likelihood framework (i.e., using

(17) to (20) from the robust Kalman filter). Σk is now

explicitly dependent on Σk−1 (i.e., Σk−1 appears in the

propagation equation for Σk). We introduce this somewhat

Fig. 1. LittleDog

unprincipled and arbitrarily derived filter for comparison with

out weighted Kalman filter.

III. EXPERIMENTAL RESULTS

We evaluated our weighted robust Kalman filter on data

collected from a robotic dog, LittleDog, manufactured by

Boston Dynamics, Inc. (Cambridge, MA), and compared it

with three other filters. We omitted the filters of [23] and

[24], since we had difficulty implementing them and getting

them to work. instead, we used a hand-tuned thresholded

Kalman filter to serve as a baseline comparison. The three fil-

ters consist of i) the standard Kalman filter, ii) the alternative

weighted Kalman filter introduced in Section II-C, and iii) a

Kalman filter where outliers are determined by thresholding

on the Mahalanobis distance. If the Mahalanobis distance is

less than a certain threshold value, then it is considered an

inlier and processed. Otherwise, it is an outlier and ignored.

This threshold value is hand-tuned manually in order to find

the optimal value for a particular data set. If we have a priori

access to the entire data set and are able to tune this threshold

value accordingly, the thresholded Kalman filter gives near-

optimal performance.

For this paper and these experiments, we are interested in

the Kalman filter’s prediction of the observed (output) data

and the detection of outliers in the observations. We are not

interested in the estimation of the system dynamics or in the

estimation (or outlier detection) of the states. Estimation of

the system matrices for the purpose of parameter identifica-

tion is a different problem, and details on this difference are

highlighted in [33]. Similarly, detecting outliers in the states

is a different problem and left to another paper.

A. LittleDog Robot

We evaluated all filters on a 12 degree-of-freedom (DOF)

robotic dog, LittleDog, shown in Figure 1. The robot dog has

two sources that measure its orientation: a motion capture

(MOCAP) system and an on-board inertia measurement unit

(IMU). Both provide a quaternion q of the robot’s orientation:

qMOCAP from the MOCAP and qIMU from the IMU.

qIMU drifts over time, since the IMU cannot provide stable

orientation estimation but its signal is clean. The drift that

occurs in the IMU is quite common in systems where sensors

collect data that need to be integrated. In contrast, qMOCAP

has outliers and noise, but no drift. We would like to estimate

the offset between qMOCAP and qIMU, and this offset is a noisy

slowly drifting signal containing outliers.
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(a) Observed data, (qIMU − qMOCAP), from LittleDog
robot: a slowly drifting noisy signal with outliers

0 2000 4000 6000

−0.1

−0.05

0

0.05

0.1

0.15

Time step

O
u

tp
u

t 
d

a
ta

Kalman Filter

Weighted Robust KF

(b) Predicted data for the Kalman filter and weighted
robust Kalman filter. Note the change of scale in axis
from Figure 2(a).
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(c) Predicted data for the thresholded Kalman filter,
alternative Kalman filter and weighted robust Kalman
filter

Fig. 2. Observed vs. predicted data from LittleDog robot shown for all
Kalman filters, over 6000 samples

There are various approaches to estimating this slowly

drifting signal, depending on the quality of estimate de-

sired. We can estimate it with a straight line, as done in

[28]. Alternatively, if we want to estimate the signal more

accurately, we can use the proposed outlier-robust Kalman

filter to track it. For optimal performance, we manually

tuned C, A, R and Q for the standard Kalman filter—a

tricky and time-consuming process. The system dynamics of

the thresholded Kalman filter were learnt using a maximum

likelihood framework (i.e., using (17) to (20) without any

weights). Its threshold parameter was manually tuned for best

performance on this data set.

Figure 2(a) shows the offset data between qMOCAP and

qIMU for one of the four quaternion coefficients, collected

over 6000 data samples, at 1 sample/time step. As expected,

the standard Kalman filter fails to detect and ignore the

outliers occurring between the 4000th and 5000th sample, as

seen in Figure 2(b). When comparing our weighted robust

Kalman filter with the other remaining two filters, Figure 2(c)

shows that the thresholded Kalman filter does not react as

violently as the standard Kalman filter to outliers and, in fact,

appears to perform similarly to the weighted robust Kalman

filter. This is to be expected, given that we hand-tuned

the threshold parameter for optimal performance (i.e., the

thresholded Kalman filter is near-optimal in this experiment).

Notice that the weighted robust filter does not track noise in

the data as closely as the alternative filter. This is a direct

result of higher Kalman gains in the alternative filter and a

consequence of the dependency on the previous state state’s

covariance.

In this experiment, the advantages offered by our weighted

outlier-robust Kalman filter are clear. It outperforms the

traditional Kalman filter and alternative Kalman filter, while

achieving a level of performance on par with a thresholded

Kalman filter (where the threshold value is manually tuned

for optimal performance).

IV. CONCLUSIONS AND FUTURE WORKS

We derived a novel Kalman filter that is robust to outliers

in the observations by introducing weights for each data

sample. This Kalman filter learns the weights, as well as

the system dynamics, without any need for manual parameter

tuning by the user, heuristics or sampling. It performs as well

as a hand-tuned Kalman filter (that required prior knowledge

of the data) on real robotic data. It provides an easy-to-use

competitive alternative for robust tracking of sensor data and

offers a simple outlier detection mechanism that can be easily

applied to more complex, nonlinear filters.
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