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Abstract

One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the
impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this
principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments.
It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic
tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm
PP (Policy Improvement with Path Integrals). PP is a model-fiee, sampling-based learning method derived from first
principles of stochastic optimal control. The PP algorithm requires no tuning of algorithmic parameters besides the
exploration noise. The designer can thus fully focus on the cost function design to specify the task. From the viewpoint
of robotics, a particular useful property of PI* is that it can scale to problems of many DOFs, so that reinforcement
learning on real robotic systems becomes feasible. We sketch the PP algorithm and its theoretical properties, and how it
is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several
simulated and real robots. We consider tasks involving accurate tracking through via points, and manipulation tasks
requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference
trajectory and the impedance of the end-effector. The results show that we can use path integral based reinforcement
learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power
of variable impedance control is made available to a wide variety of robotic systems and practical applications.

Keywords
Reinforcement learning, variable impedance control, gain scheduling, motion primitives, compliant control, stochastic
optimal control

1. Introduction accomplish such optimal performance without knowledge
of the models of the motor system and/or the environment.
This property is especially appealing for learning how to
interact with objects and the environment, as good contact
models are notoriously difficult to obtain. However, so far,
RL does not scale well to high-dimensional continuous
state—action control problems.

Closely related to RL is optimal control theory (Stengel
1994), where gain scheduling is a natural outcome of
many optimal control algorithms. However, optimal control
requires model-based derivations, such that it is frequently

Biological motor systems excel in terms of versatility, per-
formance, and robustness in environments that are highly
dynamic, often unpredictable, and partially stochastic.
Whereas classical robotics is mostly characterized by high-
gain negative error feedback control, biological systems
derive some of their superiority from low-gain compliant
control with variable and task-dependent impedance (Selen
et al. 2009). If we adapt this concept of adaptive impedance
for PD negative error feedback control, this translates into
time varying proportional and derivative gains, also known
as gain scheduling. Finding the appropriate gain schedule 'Computational Learning and Motor Control Lab, University of Southern
for a given task is, however, a hard problem (Hogan 1985a;  California, Los Angeles, USA

Siciliano et al. 2009). zGDepartn;ter;t of Advanced Robotics, Italian Institute of Technology:
enova, Italy

One possible solution to this problem is Reinforcement
Learning (RL) (Sutton and Barto 1998). The idea of
RL is that, given only a reward function, the learning COrresponding author:
R > 8 y A R ’ g Jonas Buchli, Department of Advanced Robotics, Italian Institute of Tech-
algorithm finds strategies that yield high reward through yl0gy, Via Morego 30, 16163 Genova, Italy
trial and error. As a special and important feature, RL can  Email: jonas@buchli.org
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Fig. 1. System overview. After initialization, the planned trajec-
tory and gain schedules of a Dynamic Movement Primitive are
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optimized with respect to a cost function with the Reinforcement
Learning algorithm PI2.

not applicable to complex robotic systems and environ-
ments, where models are unknown or not sufficiently
known.

In this paper, we present PI? (Policy Improvement with
Path Integrals) (Theodorou et al. 2010a), an RL algorithm
which is derived from first principles of stochastic optimal
control, and which does scale to complex robotic systems
(Stulp et al. 2010).

The PI? algorithm is tailored to optimize Dynamic
Movement Primitives (DMPs), a specific implementation of
a parameterized policy, based on a set of dynamical system
equations (Ijspeert et al. 2002). The system overview in Fig-
ure 1 illustrates how PI? simultaneously optimizes planned
trajectories and gain schedules in a DMP. First, a DMP
is initialized with an initial trajectory and constant gains.
Here, the planned trajectory and gain schedule of each joint
are represented as separate dimensions in the DMP. For a
robot with » joints, the DMP therefore has 2n dimensions.
PI? then iteratively updates the DMP parameters by execut-
ing it to accomplish the desired behavior, and computing
the cost for each resulting trajectory with the task-specific
cost function. During execution, exploration is ensured by
adding exploration noise to the DMP parameters. Learn-
ing continues until the cost converges, or a certain number
of iterations is reached. With this approach, PI* is able
to simultaneously optimize both the trajectories and gain
schedules, as both are homogeneously represented in the
same DMP.

By penalizing high gains in the cost function, the robot
learns to be compliant when it can be, and stiffens up only
when the task requires it. In comparison to high-gain con-
trol approaches, this leads to lower energy consumption,
less wear and tear for the robot, and safer human-robot
interaction.

We evaluate our approach on three different simulated
robotic systems, a three-degree-of-freedom (3-DOF) Phan-
tom Premium Robot, a 6-DOF Kuka Lightweight Robot,
and the humanoid SARCOS CBi. We also validate the
results on a real Phantom Premium Robot. The tasks require
accurate tracking through a via point or physical manipula-
tion of objects in the environment.

The main contributions of this article are as follows:

(1) The use of parametrized control policies to represent the
parameters not only of a reference trajectory, but also of
a feedback controller. As the reinforcement algorithm
PI2 is able to optimize the parameters of all policies
simultaneously, we thus present a novel formulation of
learning both the feedback controller and the reference
trajectory on a multi-dimensional robotic system in a
model-free reinforcement learning setting.

(2) Applying this approach to learning variable gain sched-
ules for a PD controller.

(3) Implementing and evaluating the proposed method on
both simulated and real robotic systems.

(4) Demonstrating how the learned gain schedules enable
the robot to be as compliant as possible, stiffening up
only when the task requires it.

In this paper we are building on initial work presented
in Buchli et al. (2010), and show further results by apply-
ing the proposed approach to manipulation tasks and a
real robot. We also provide a more extensive discussion of
related work.

The rest of this paper is structured as follows. We first
motivate variable impedance control in Section 2. In Sec-
tion 3, we present our RL algorithm PI?, and explain how
it is applied to variable gain scheduling in Section 4. An
empirical evaluation of our methods on simulated and real
robots is presented in Section 5. In Section 6, we dis-
cuss related concepts and work. Finally, we conclude with
Section 7.

2. Variable impedance control

The classical approach to robot control is negative feed-
back control with high proportional—derivative (PD) gains.
This type of control is straightforward to implement,
robust towards modeling uncertainties, and computation-
ally cheap. Unfortunately, high-gain control is not ideal for
many tasks involving interaction with the environment, e.g.
force control tasks or locomotion. In contrast, impedance
control (Hogan 1985a) seeks to realize a specific impedance
of the robot, either in end-effector or joint space. The issue
of specifying the target impedance, however, has not yet
been completely addressed. While for simple factory tasks,
where the properties of the task and environment are known
a priori, suitable impedance characteristics may be deriv-
able, it is usually not easy to understand how impedance
control is applied to more complex tasks such as a walking
robot over difficult terrain or the manipulation of objects in
daily life (e.g. pillows, hammers, cans, etc.). An additional
benefit of variable impedance behavior in a robot comes
from the added active safety due to soft ‘giving in’, both
for the robot and its environment.

In the following we consider robots with torque con-
trolled joints. The motor torques T are calculated via a PD
control law with feedforward control term Ty

T = —Kp(q — q4) —Kp(q — q2) + T4 (M
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where Kp, Kj are the positive-definite position and velocity
gain matrices, q, q are the joint positions and velocities, and
q4, qq are the desired joint positions and velocities. The
feedforward control term may come, for instance, from an
inverse dynamics control component, or a computed torque
control component (Sciavicco and Siciliano 2000a). Thus,
the impedance of a joint is parameterized by the choice of
the gains Kp (‘stiffness”) and Kp (‘damping’).

For many applications, the joint space impedance is,
however, of secondary interest. Most often, regulating
impedance matters the most at certain points that contact
with the environment, e.g. the end-effectors of the robot.
We therefore need to assess the impedance at these points
of contact rather than the joints. Joint space impedance is
computed from the desired task space impedance Kpx, Kp x
by help of the Jacobian J of the forward kinematics of the
robot as follows (Sciavicco and Siciliano 2000a):

Kpq =J"KpyJ and Kpq=J"KpyJ. (2
Here we assume that the geometric stiffness due to the
change of the Jacobian is negligible in comparison with the
terms in Equation (2). Regulating the task space impedance
thus implies regulating the joint space impedance. Further-
more, this fundamental mathematical relationship between
joint and task space also implies that a constant task
stiffness in general means varying gains at the joint level.

In the next section we sketch a RL algorithm that is then
applied to learning the time-dependent gain matrices.

3. Reinforcement learning in high dimensions:
the PI* algorithm

RL algorithms can be derived from different frameworks,
e.g. dynamic programming, optimal control, policy gradi-
ents, or probabilistic approaches. Recently, an interesting
connection between stochastic optimal control and Monte
Carlo evaluations of path integrals was made (Kappen
2005b). Theodorou et al. (2010a) generalized this approach
and used it in the context of model-free RL with parame-
terized policies, which resulted in the PI? algorithm. In the
following, we provide a short outline of the prerequisites
and the most important points in the development of the PI
algorithm as needed in this paper. The development of the
algorithm in its entirety can be found in Theodorou et al.
(2010a).

The foundation of PI> comes from (model-based)
stochastic optimal control for continuous time and continu-
ous state—action systems. We assume that the dynamics of
the controlled system is of the form

X, = (%, ) +G(x,) (0, + &) = £, + G, (u; + ¢) 3)
with x, € %" denoting the state of the system, G, =
G(x;) € WP the control matrix, f, = f(x;) € R"*! the pas-
sive dynamics, u, € N <1 the control vector and ¢, € HP*!
Gaussian noise with variance X.. Many robotic systems

fall into this class of control systems. For the finite horizon
problem #; : ty, we want to find control inputs u,,.,, which
minimize the value function!

V(%) =V, = min B, [R()) ], )

where R is the finite horizon cost over a trajectory t; starting
at time ¢#; in state x,, and ending at time #y

R(x) = by + / "t )

i

and where ¢;, = ¢(x;,) is a terminal cost at time #y. Here
r; denotes the immediate cost at time 7. As an immediate
cost we consider

1
re=r(X,u,t)=q; + _u;rR“t

: ©)

where g, = q(X;, t) is an arbitrary state-dependent cost func-
tion, and R is the positive semi-definite weight matrix of the
quadratic control cost.

Based on the principles of stochastic optimal control
(Stengel 1994) and as detailed in Theodorou et al. (2010a)
by minimizing the Hamilton—Jacobi—Bellman (HJB) equa-
tion of our problem we can derive a second-order partial
differential equation for the time derivative of the value
function:

=0V = q++(Vx Vt)T f; (7

1
—3 (V)T GRTIG (V)
1 T
+ 7 trace ((Vxx V) G XG, ) .

The same principles also provide us with a result for the
corresponding optimal control input, which is a function of
the state and is given by the equation:
u(x;)=u; = —R'G(V,, V). (8)
We are leaving the standard development of this opti-
mal control problem by transforming the HIB equation with
the substitution V;, = —Xilog W, and by introducing the
assumption’ that AR™' = X,. This assumption allows us
to simplify the mathematical treatment of the HIB equa-
tion. As shown in detail in Theodorou et al. (2010a), in
this way, the transformed HJB equation becomes a linear
second-order partial differential equation:

1
—0 = =gV, + £ (V¥ ©9)
1
+§ tr ((Vxx"pt) G/ Xe GtT)
with boundary condition ¥,, = exp (—%q&w). Using

the Feynman—Kac theorem (Yong 1997; Oksendal 2003;
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Theodorou et al. 2010a), the solution for the exponentially
transformed value function becomes

i’ dtlmo/p(z Ix;)
N—-1

J=0

exp dt;. (10)

Thus, we have transformed our stochastic optimal control
problem into an approximation problem of a path integral.
As detailed in Theodorou et al. (2010a), it is not necessary
to compute the value function explicitly, but rather it is pos-
sible to derive the optimal controls directly. The optimal
controls again take the form of an expectation:

(11
(12)

u, = / P@)u() dr;
u(t)=R"'G,” (G,R'G,)” Gye,
where P (t;) is the probability of a trajectory 7;,
)
f e 5@ g,

S(7;) is the generalized cost (cf. Table 1), and b,, is a more
complex expression, beyond the space constraints of this
paper.

A post-hoc interpretation of this result, which confirms
the intuition about how optimal controllers should be cho-
sen, is as follows: The probability P (r;) is the weighting
of a local control with the cost function. The optimal con-
trol is thus the expectation of the local controls when they
are associated with a probability that decreases for con-
trollers yielding a high cost. The important conclusion is
that it is possible to evaluate Equation (11) using Monte
Carlo sampling (Caflisch 1998) of the control system, i.e.
our optimal control problem can be solved as an estima-
tion problem. Equation (11) can therefore be approximated
by drawing random samples of the noise vector €; and
calculating the associated probability P (z;) by forward-
integrating the system dynamics and calculating the costs.
The P-weighted sum of the local controls u (z;) of these
samples then approximates the value of the integral. In
applications to robot learning, the forward-integration of
the system dynamics is replaced by drawing local con-
trols from a probability distribution and running the ran-
domized controllers on the real system. The cost statistics
are then collected from these experiments. Each of these
experiments is called a roll-out.

P@) =

3.1. The PP algorithm

The PI? algorithm is just a special case of the optimal con-
trol solution in Equation (11), applied to control systems
with parameterized control policy:

a,=g/(0+e€), (13)

Table 1. Pseudocode of the PI? algorithm for a 1D parameterized
policy.

input : r,=q +0TRO,; immediate cost function
Oty ; terminal cost term
a, =gl (0+e); parameterized policy
g, ; basis function from the system dynamics
DI variance of the mean-zero noise €;
Oinit ; initial parameter vector
K ; number of roll-outs per update
output : 0 ; final parameter vector

while trajectory cost R not converged do
Create K roll-outs of the system from the same start
state xo using stochastic parameters 0 + €; at every

time step (€q ~ N(077(#updates so far) Lo?).

foreach k in K ;
do

for all roll-outs

—1 T
M, = R 8tk gtjuk
jok T T —1
J gtj,kR‘ Btk

S(Tik) = Grnk + 30, Gry bt
ESL 0 Moy e, ) TRO + Mo e, )

—lS(T,- &)
oy x5 (Tik
P(Tik) Zle[e*is(‘ri.k)]
end
foreach i in N ; for all time steps
do

80r, =34y [P (Tik) Me, i €,.5]
[69]3 — Zj\;gll(v]\izl) Wit [50%]1'
Zw_’:o wj ¢, (N—i)
6 —0+00 ;

end

Create one noiseless roll-out to evaluate the trajectory

cost R = ¢¢y + vazz)l r¢, of the current parameters 6.
end

parameter update

i.e. the control command is generated from the inner prod-
uct of a parameter vector @ with a vector of basis function
g, — the noise ¢, is interpreted as user controlled exploration
noise.

A particular case of a control system with parameterized
policy is the DMP approach introduced by Ijspeert et al.
(2002):

1.
i =fi+g0+e) (14)
1.
—qds = Vt
T
Jo=oa(B(g—qar) —Vv1)
1
—.S't = —us$; (15)
T
WS
&) = <5 ——(g — ) (16)
' k=1 Wkt
w; = exp (—0.5h(s; — ¢;)*) . (17)
The intuition of this approach is to create desired trajec-
tories qay, qas qay = Tv; for a motor task out of the
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time evolution of a nonlinear attractor system, where the
goal g is a point attractor and gy the start state. The
parameters 6 determine the shape of the attractor land-
scape, which allows us to represent almost arbitrary smooth
trajectories, e.g. a tennis swing, a reaching movement, or
a complex dance movement. While leaving the details of
the DMP approach to Ijspeert et al. (2002), for this paper
the important ingredients of DMPs are that: (i) the over-
all system formed by the attractor system Equation (14)
coupled with a nonlinear robot dynamics via the con-
trol law Equation (1) has the same form as Equation (3);
and that (ii) the p-dimensional parameter vector 6 can be
interpreted as motor commands as used in the path inte-
gral approach to optimal control (i.e. u = #). Learn-
ing the optimal values for @ will thus create a optimal
reference trajectory for a given motor task. A further
key step in the application of the path integral theory
to robot learning problems is its formulation as an iter-
ative algorithm. Instead of evaluating the path integral
Equation (11) with a large number of samples and cal-
culating the optimal vector directly, the optimal value is
approached iteratively. By not sampling large irrelevant
parts of the state space, solving high DOF learning prob-
lems thus becomes feasible. The PI?> learning algorithm
applied to this scenario is summarized in Table 1. As
illustrated by Theodorou et al. (2010a,b), PI?> outperforms
previous RL algorithms for parameterized policy learning
by at least one order of magnitude in learning speed and
also lower final cost performance. As an additional ben-
efit, PI> has no open algorithmic parameters, except for
the magnitude of the exploration noise €, (the parameter
A is set automatically, cf. Theodorou et al. (2010a)). We
would like to emphasize one more time that PI> does not
require knowledge of the model of the control system or
the environment.

Key innovations in PI*. In summary we list the key inno-
vations in PI?> that we believe lead to its superior per-
formance. These innovations make applications such as
the learning of gain schedules for high-dimensional tasks
possible.

e The basis of the derivation of the PI> algorithm is
the transformation of the optimal control problem into
a probabilistic estimation problem which can then be
solved by sampling techniques. This transformation is
achieved with the assumption AR™! = X, to transform
anonlinear partial differential equation (PDE) into a lin-
ear one, and use the Feynman—Kac lemma (Qksendal
2003; Theodorou et al. 2010a) to approximate its
solution.

e Paths with higher cost have lower probability. A clear
intuition that has also rigorous mathematical represen-
tation through the exponentiation of the value function.
This transformation is necessary for the linearization
of HJB into a linear second-order partial differential
equation.

e With PI? the optimal control problem is solved with the
forward propagation of dynamics. Thus, no backward
propagation of approximations of the value function is
required. This is a very important characteristic of PI?
that allows for sampling (i.e. roll-out) based estimation
of the path integral.

e For high-dimensional problems, it is not possible to
sample the whole state space and that is the reason for
applying path integral control in an iterative fashion to
update the parameters of the DMPs.

e The number of roll-outs per iteration step is a parameter
that can be chosen by the user. The number of roll-outs
is not very critical and can be chosen to be very small, as
shown in the examples. This is very important to render
the learning approach feasible on real systems.

e The derivation of an RL algorithm from first principles
largely eliminates the need for open parameters in the
final algorithm.

4. Variable impedance control with PI*

The PI? algorithm as introduced above seems to be solely
suited for optimizing a trajectory plan, and not directly the
controller. Here we demonstrate that this is not the case, and
how PI? can be used to optimize a gain schedule simulta-
neously to optimize the reference trajectory. For this pur-
pose, it is important to realize how Equation (3) relates
to a complete robotics system. We assume a d-DOF robot
that obeys rigid body dynamics. Here q” denotes the joint
velocities, and ¢” the joint angle positions. Every DOF
has its own reference trajectory from a DMP, which means
that Equation (14) are duplicated for every DOF, while
Equations (15), (16), and (17) are shared across all DOFs:
see Ijspeert et al. (2002) for explanations on how to cre-
ate multi-dimensional DMPs. Thus, Equation (3) applied to
this context, i.e. using rigid body dynamics equations, with
M, C, G the inertia matrix, coriolis/centripedal and gravity
forces, respectively, and combining them with the reference
trajectory generating DMP becomes

qQ" = M) (-C(¢?,q") —G(¢q") +T)

¢ =q (18)
1.

—8 = —oS;

T

I, v 0T pi i
G = (g — q4,) —4a) 8" Oy + €)

1. ,
;‘Iz,i ={qq; (19)
where each element 7; of the torque vector T:
T, = —Kp;i (¢ — CIZ,[) — &/Kp,i (4] — qy;)
+Tff,l" (20)

The terms gy, ;, qfi’i are the reference joint angle position and
velocity of the ith DOF as computed by the DMP Equation
(19). The control vector to this system is u, = 6,
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Note that in the control law in (20), we used Equation
(1) applied to every DOF individually using a time-varying
gain, and we inserted the common practice that the damp-
ing gain K}, is written as the square root of the proportional
gain K}, with a user determined multiplier £. A critically
important result of Theodorou et al. (2010a) is that for
the application of PI? only those differential equations in
Equation (18) matter that have learnable parameter 6'.
Moreover, the optimization of these parameters is accom-
plished by optimizing the parameter vector of each differ-
ential equation independently (as shown in Table 1), despite
that the DOFs are coupled through the cost function. For
this reason, PI> operates in a model-free mode, as only
one of the DMP differential equations per DOF is required,
and all other equations, including the rigid body dynamics
model, drop out.

For variable stiffness control, we exploit these insights
and add one more differential equation per DOF in
Equation (18):

Kpi=ox (gx®k +ek)—Kei) @)

gkl = —po— (22)

k=1 Wk

This equation models the time course of the position gains,
coupled to Equation (15) of the DMP. Thus, Kp; is rep-
resented by a basis function representation linear with
respect to the learning parameter 0%, and these parameter
are learned with the PI> algorithm following Table 1. We
assume that the time constant # is so small, that for all

practical purposes we can assume that Kp; = g§i£(0%+e§<j,)
holds at all times.

Essentially Equations (18), (19), and (21) are incorpo-
rated into one stochastic dynamical system of the form
of Equation (3). In conclusion, we achieved a novel for-
mulation of learning both the reference trajectory and
the gain schedule for a multi-dimensional robotic sys-
tem with model-free reinforcement learning, using the
PI? algorithm and its theoretical properties as foundation
of our derivations.

5. Empirical evaluation

We now present results of applying the outlined algorithms
to three robots with three, six, and seven DOFs, respec-
tively. We show four experiments using these robots, three
in simulation, and one on a real robot.

The first two experiments serve to illustrate the idea and
effects of variable gain schedule learning with two via point
experiments with robotic arms. The other two experiments
are manipulation tasks, where a real robot learns to flip
a light switch, and the humanoid robot CBi (Cheng et al.
2007) learns to open a door.

Fig. 2. 3-DOF Phantom simulation in SL.

5.1. Via-point experiments

In the first two experiments the robot’s primary task is to
pass through an intermediate goal, either in joint space or
end-effector space: such scenarios occur in tasks such as
playing tennis.

For these two experiments, we express the goal of the
task with the following immediate cost function, which is a
task-specific implementation of the generic cost function in
Equation (6):

ry = Wgain Z K;{; + WaeelIX|l + inafpointc( nH. (23)

1

Here, ), K}, is the sum over the proportional gains over all
joints. The reasoning behind penalizing the gains is that low
gains lead to several desirable properties of the system such
as compliant behavior (safety and/or robustness (Buchli
et al. 2009)), lowered energy consumption, and less wear
and tear.® The term |¥| is the magnitude of the accel-
erations of the end-effector. This quantity is penalized to
avoid high-jerk end-effector motion. This penalty is low in
comparison to the gain penalty.

The component of the cost function C(#) that represents
this primary task is described individually for each robot in
the following sections. Gains and accelerations are penal-
ized at each time step ¢, but C(¢) only leads to a cost at
specific time steps along the trajectory.

For both via-point experiments, the cost weights are
Wia—point = 2,000, Weuin = 1/N, Wyee = 1/N. Dividing
the weights by the number of time steps N is convenient,
as it makes the weights independent of the duration of a
movement.

5.1.1. Experiment 1: Phantom robot, passing through a via
point in joint space The Phantom Premium 1.5 Robot is a
3-DOF, two-link arm. It has two rotational DOFs at the base
and one in the arm. We use a physically realistic simulation
of this robot generated in SL (Schaal 2009), as depicted in
Figure 2.

The task for this robot is intentionally simple and aimed
at demonstrating the ability to tune task relevant gains in
joint space with straightforward and easy to interpret data.
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Fig. 3. Learning curve for the phantom robot. Left: linear y-axis.
Right: logarithmic y-axis, with the total cost broken down into the
separate cost components of Equation (23).

The duration of the movement is 2.0 s, which corre-
sponds to 1,000 time steps at a 500 Hz servo rate. The
intermediate goals for this robot are set as follows:

C(r) = 8(1—0.4) | gsr(1) +0.2 |

+6(t —0.8) | gsre(t) —0.4 |
+8(t—1.2) | qes(t) —1.5 |

24

This penalizes joint SR for not having an angle
gsk = —0.2 at time + = 0.4 s. Joints SFE and EB are
also required to go through (different) intermediate angles
at times 0.8 and 1.2 s, respectively.

The initial parameters 6’ for the reference trajectory are
determined by training the DMPs with a minimum jerk tra-
jectory Zefran et al. (1998) in joint space from q,—g9 =
[0.0 0.3 2.0]" to q,=20 = [—0.6 0.8 1.4]". The function
approximator for the proportional gains of the three joints
is initialized to return a constant gain of 6.0 Nm rad~'. The
initial trajectories are depicted as thin black lines in Figure
4, where the angles and gains of the three joints are plot-
ted against time. Since the task of PI? is to optimize both
trajectories and gains with respect to the cost function, this
leads to a six-dimensional RL problem. The robot executes
100 parameter updates, with 4 noisy roll-outs per update.
After each update, we perform one noise-less test trial for
evaluation purposes.

Figure 3 depicts the learning curve for the phantom robot,
which is the overall cost of the noise-less test trial after
each parameter update. The joint space trajectory and gain
scheduling after 100 updates are depicted as thick solid
lines in Figure 4.

5.1.2. Experiment 2: Kuka robot, passing through a via-
point in task space Next we show a similar task on a
simulated 6-DOF Kuka Light-Weight Arm, depicted in
the middle of Figure 7. This example illustrates that
our approach scales well to higher-dimensional systems,
and also that appropriate gains schedules are learned
when intermediate targets are chosen in end-effector space
instead of joint space.

The duration of the movement is 1.0 s, which corre-
sponds to 500 time steps. This time, the intermediate goal is
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Fig. 4. [Initial (thin) and final (thick) joint trajectories and gain
scheduling for each of the three joints of the phantom robot.
Yellow circles indicate intermediate via points in joint space at
different times.
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Fig. 5. Learning curve for the Kuka robot. Left: linear y-axis.
Right: logarithmic y-axis, with the total cost broken down into the
separate cost components of Equation 23.

for the end-effector x to pass through [0.7 0.3 0.1]T at time
t=05s:
C(t)y=8(t—0.5)|x—[0.70.30.1]" | (25)

The six joint trajectories are again initialized as minimum
jerk trajectories. As before, the resulting initial trajectory is
plotted as a thin black line in Figure 6. The initial gains
are set to a constant [60, 60, 60, 60, 25, 6]T. Given these ini-
tial conditions, finding the parameter vectors for DMPs
and gains that minimizes the cost function leads to a 12-
dimensional RL problem. We again perform 100 parameter
updates, with 4 exploration roll-outs per update.

The learning curve for this problem is depicted in
Figure 5. The trajectory of the end-effector before learn-
ing and after 30 and 100 updates is depicted in Figure 6.
The intermediate goal at = 0.5 s is visualized by circles.
Finally, Figure 7 shows the gain schedules before learning
and after 30 and 100 updates for the 6 joints of the Kuka
robot.

5.1.3. Discussion of via-point experiments For both exper-
iments PI> has adapted the initial minimum jerk trajec-
tories such that they fulfill the task and pass through the
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gain schedules for each of the six joints of the Kuka robot.

desired joint angles or the end-effector task-space goal at
the specified times with only small error (Figures 4 and 6).
These intermediate goals are represented by the circles on
the graphs. The remaining error is a result of the trade-
off between the different factors of the cost function (i.e.
penalty for the distance to goal versus the penalty for high
gains). It learns to do so after only 30 updates for the task
space goal on the 6-DOF Kuka Arm (Figure 5) and less

than 20 for the joint space goal in the 3-DOF Phantom robot
(Figure 3).

Because the magnitude of gains is penalized in gen-
eral, they are low when the task allows it, as illustrated in
Figure 4: after t = 1.6 s, all gains drop to their pre-specified
minimum values, because accurate tracking is no longer
required to fulfill the goal. Once the task is completed, the
robot becomes maximally compliant, as one would wish it
to be.

The same effect is visible in the results for the Kuka Arm,
where after 100 updates the peaks of most gains occur just
before the end-effector passes through the intermediate goal
(Figure 7), and in many cases decrease to the minimum gain
directly afterwards. As with the phantom robot we observe
high impedance when the task requires accuracy, and more
compliance when the task is relatively unconstrained.

The second joint (GA2) has the most work to perform,
as it must support the weight of all of the more distal links.
Its gains are by far the highest, especially at the interme-
diate goal, as any error in this DOF will lead to a large
end-effector error.

When the robot is required to pass through the interme-
diate targets, it needs better tracking, and therefore higher
gains. Therefore, the peaks of the gains correspond roughly
to the times where the joint is required to pass through an
intermediate point. Owing to nonlinear effects, e.g. corio-
lis and centripedal forces, the gain schedule shows more
complex temporal behavior as one would initially assume
from specifying three different joint space targets at three
different times.

For the Kuka Arm, the learning has two distinct phases.
In the first phase (plotted as a dashed graph), the robot is
learning to make the end-effector pass through the inter-
mediate goal. At this point, the basic shape of the gain
scheduling has been determined. In the second phase, PI?
fine tunes the gains, and lowers them as much as the task
permits.

In summary, these two experiments illustrate that we
have achieved the objective of variable impedance con-
trol: the robot is compliant when possible, but has a higher
impedance when the task demands it.

5.2. Manipulation experiments

The next two experiments show how the proposed method
can find trajectories and gain schedules for more complex
behaviors that involve contact with the environment.

5.2.1. Experiment 3: Phantom robot, flipping a light switch
The goal of this task is for the 3-DOF Phantom robot to flip
a light switch. The experiment was conducted with both a
real robot, depicted in Figure 8, and the simulated robot as
in Experiment 1.

The initial trajectory was acquired through kinesthetic
teaching. To demonstrate the trajectory, the gains of the
robot were simply set to zero, as the robot is light enough to
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Fig. 8. Experimental set-up for the Phantom experiment, includ-
ing the demonstrated trajectory.

maneuver by hand without gravity compensation. The three
joint angles were recorded over time, and a low-pass But-
terworth filter is applied to these trajectories to suppress the
large accelerations that arise due to the noisy recordings.
The resulting trajectory in end-effector space is depicted in
Figure 8. A DMP with 20 basis functions is trained for each
degree of freedom.

The initial gains for each joint are set to a constant value
over time of 0.2, 0.5 and 0.3 for the SR, SFE and EB joint,
respectively. This corresponds to a quarter of the default
gains for this robot. With these gains, the robot is very com-
pliant, and hardly exerts forces, even when pushed far off
the desired trajectory. These gains are also the minimum
gains allowed during learning. Lower gains lead to such
bad tracking of desired trajectories that the robot frequently
reaches its joint limits, which is undesirable.

The cost function for PI> consists of two parts. The ter-
minal cost ¢, is zero if the switch was flipped, or 500 if it
was not. On the real robot, the user provides yes/no feed-
back (keyboard input) whether the switch was flipped or
not. The intermediate costs for the gains are the same as
in the via-point experiments, i.e. r, = ]%,Zle K},’t, again
dividing by the length of the trajectory N to be independent
of trajectory duration.

The variance of the exploration noise for the gain sched-
ule of each joint is 10™*y”, with decay parameter y =
0.98 and » the number of updates. Before each update,
four roll-outs are executed on the robot, and the four roll-
outs with lowest cost from the previous parameter update
are kept, so each update is computed over K = 8§ tra-
jectories. This elitarianist reuse of roll-outs makes sure
that ‘good examples’ are not forgotten, as chance might
have it that all newly generated roll-outs are worse than
the previous mean, and reward weighted averaging would
lead to

Results. Figure 9 depicts the cost of the noise-less test trial
after each update for both the real and simulated robot. The

Phantom manipulation task
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Fig. 9. Learning curves of the real and simulated Phantom on the
light switch task.
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Fig. 10. Learned gain schedules of the real (upper row) and sim-
ulated (lower row) of the three Phantom joints after 0/2/18 and
0/4/30 updates, respectively.

gain schedules after 0/2/18 and 0/4/30 updates are depicted
for the real and simulated robot, respectively, in Figure 10.
These results are discussed in Section 5.2.3.

5.2.2. Experiment 4: CBi humanoid robot, pushing open
a door In this task, the simulated CBi humanoid robot
(Cheng et al. 2007) is required to open a door. This robot
is accurately simulated with the SL software (Schaal 2009).
For this task, we not only learn the gain schedules, but also
improve the planned joint trajectories with PI> simultane-
ously.

In this task, we fix the base of the robot, and consider
only the 7 DOFs in the left arm. The initial trajectory before
learning is a minimum jerk trajectory in joint space. In
the initial state, the upper arm is kept parallel to the body,
and the lower arm is pointing forward. The target state is
depicted in Figure 11.

The gains of the seven joints are initialized to one-tenth
of their default values. This leads to extremely compliant
behavior, whereby the robot is not able to exert enough force
to overcome the static friction of the door, and thus cannot
move it. The minimum gain for all joints was set to five.
Optimizing both joint trajectories and gains leads to a 14-
dimensional learning problem.

Downloaded from ijr.sagepub.com at UNIV OF SOUTHERN CALIFORNIA on May 27, 2011


http://ijr.sagepub.com/

10

The International Journal of Robotics Research 00(000)

CBi manipulation task

Total cost
= = Cost due to gains

_.
=3
'

:
o

;
o

L
3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

trajectory cost of test trial

1 1 1
40 #updates 80 100

0 100 200 #roll-outs 400 500

Fig. 11. Left: Task scenario. Right: Learning curve for the door
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Fig. 12. Learned joint angle trajectories (left) and gain schedules
(right) of the CBi arm after 0/6/100 updates. The gain sched-
ules of only three joints have been depicted for sake of clarity
(EB: elbow; SAA: shoulder adduction—abduction; SFE: shoulder
flexion—extension).

The terminal cost is the degree to which the door was
opened, i.e. ¢y, = 10*(Ypar — Yv), where the maximum
door opening angle ¥,,,, is 0.3 rad (it is out of reach oth-
erwise). The immediate cost for the gains is again r, =
Ly K
N Zui=11p-

The variance of the exploration noise for the gains is
again 10~*y", and for the joint trajectories 10", both with
decay parameter A = 0.99 and » the number of updates.*
The number of executed and reused ‘elite’ roll-outs is both
five, so the number of roll-outs on which the update is
performed is K = 10.

Results. Figure 11 (right) depicts the total cost of the noise-
less test trial after each update. The costs for the gains are
plotted separately. When all of the costs are due to gains,
i.e. the door is opened completely to v, and the task is
achieved, the graphs of the total cost and that of the gains
coincide. The joint trajectories and gain schedules after 0, 6
and 100 updates are depicted in Figure 12.

5.2.3. Discussion of manipulation experiments We now
discuss the results of the last two experiments: flipping the
light switch and opening the door.

In all of the manipulation results above, there are two
distinct phases during learning. In the first few updates,
the gains are increased and a suitable trajectory is found in
order to achieve the task, i.e. flip the light switch or open
the door. This leads to a strong decrease in the cost for not
achieving the task, which is traded off against a higher cost
for higher gains. This is clearly seen in Figure 11, where
the cost due to the gains increases dramatically in the
first few updates (note the logarithmic scale), whereas the
overall cost decreases. Essentially, the robot is learning that
it is able to solve the task with high-gain control. This is
also apparent when inspecting the (dashed) gain schedules
after a few updates (2/4/6) in Figures 10 and 12: the gains
are much higher than their low values with which they are
initialized.

In the second phase, gains are lowered overall to reduce
the immediate costs r;, and the exact timing and magnitudes
of the gains required to achieve the task are determined.
On the Phantom robot, this leads to a peak in the gains of
the elbow joint (EB) when the robot’s end-effector comes
into contact with the switch. This joint needs to stiffen up
in order to exert the force necessary to flip the switch. On
the CBi robot, there is a peak in the elbow joint before
contact, as the elbow must be lifted to reach the door. Dur-
ing door opening, the gains of the shoulder flexor—extensor
joint (SFE) increase, again to exert the force necessary
to open the door. Too much compliance during this time
will not allow the robot to achieve its task. It is interesting
to see that after 100 updates, the sum of the gains (i.e. the
‘cost due to gains’ in Figure 11) for the CBi robot is actually
25% lower than at initialization, when it could not open the
door. But by timing and tuning the gains appropriately as
depicted in Figure 12, the robot is now able to open the door.

Note that during this second phase, the robot sometimes
lowers the gains too much, and is no longer able to flip
the switch/open the door, as indicated by the spikes in the
learning curves. That the robot is always able to open the
door/flip the switch one update after a spike is because of
the elitarianism, which always leads to at least some roll-
outs with successful task achievement to be among the pool
of K roll-outs on which the parameter update is performed.

In Figure 9, it is surprising to see that learning is faster
on the real robot that in simulation. We believe this is due
to the strong discontinuity in the cost function, caused by
the binary nature of achieving the task or not. Owing to
the reproducibility of movement and interactions in simu-
lation, this will indeed be a very sharp discontinuity. On
the real robot this discontinuity is ‘smoothed’ by imperfect
tracking, inaccurate sensors, and slight displacements of the
light switch between trials. We assume that this leads to a
smoother cost function, which facilitates learning.

In summary, learning such variable gain schedules
enables the robot to keep its gains as low as possible (with
resulting energy efficiency, reduced wear and tear, and com-
pliance), switching to high-gain control only when the task
requires it (i.e. when force is required to open the door).
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6. Related work

6.1. Biological motor control

It has been shown that humans are able to control the
impedance characteristics of their hand in task space (Bur-
det et al. 2006; Selen et al. 2009). The mathematical treat-
ment of the human motor system is usually developed along
the same lines as in robotics, i.e. the basic kinematics and
dynamics equations are borrowed from rigid body dynam-
ics. However, actuation is done by antagonistic muscle sys-
tems to generate joint torques, which adds another space,
the muscle actuation space (Hogan 2006). For the discus-
sion as it applies to the presented work this added space and
complexity is of minor importance. The central character-
istics are: (a) the relevance of impedance in task space; and
(b) realization of impedance control in another space, i.e. in
robots in joint space, in humans in ‘muscle space’. We cur-
rently present results only on tuning stiffness in joint space,
and not in ‘muscle’ space (e.g. no biarticular or antagonistic
actuation, no nonlinearities). However, our method gener-
alizes to more complex parameterized impedance control
laws, and could also parameterize muscle-based models.
Therefore, this work opens a large field of comparative stud-
ies in biological motor control with PI?. It is also worth
noting that in the biological motor control literature, very
often only variation of stiffness is discussed, last but not
least also due to experimental difficulties of measuring a
more general mechanical impedance in human subjects.

6.2. Impedance control

One of the motivations behind our work is the same motiva-
tion that is behind impedance control as presented by Hogan
(1985a): ‘[...] the controller should be capable of modu-
lating the impedance of the manipulator as appropriate for
a particular phase of a task’. While, for a long time, the
robotics control community has known how important it
is to control the interaction dynamics of a robot properly,
to this day ‘[T]he selection of good impedance parameters
[...] is not an easy task’ (Siciliano et al. 2009). Deriving
useful impedance controllers usually involves models and
knowledge of both the environment and the robot and deep
knowledge about designing and parameterizing such con-
trollers. Here we show how appropriate interaction behavior
can be learned purely from experience and without the need
for knowledge of the robot and the environment and only
simple reward on the quality of task achievement in the
form of a cost function (unspecific to the controller).
Hogan (1985b) discussed a variety of impedance control
schemes. One of these schemes is ‘feedback’ impedance
control where a desired impedance is chosen and tracked
via state-feedback and force-feedback. Today, this scheme
is commonly referred to as impedance control (Siciliano
et al. 2009), even though the idea of impedance control
is more general. To illustrate this fact, other schemes that
do not use feedback to control the impedance online are

also presented in Hogan (1985b) along with the feedback
impedance control scheme.

The approach presented in this paper is not to be con-
fused with ‘feedback’ impedance control. Our controllers
generate variable impedance at the end-effector by manip-
ulating the joint space impedance parameters and the ref-
erence trajectory. As joint space impedance parameters
we use variable gains of a PD controller, which does not
mean that the most general form of impedance can be real-
ized, but, in principle, other more general parameterizations
could be used to find more general impedance realizations.
The dimensionality of the learning problem will increase.
Studying the gain/benefit tradeoff of these more general
schemes remains future work.

Note that despite restricting the algorithm to tuning stiff-
ness and damping in joint space, it can still tune the appar-
ent inertia properties and other aspects of the dynamic
behavior at the end-effector (in certain limits) via the ref-
erence trajectory. The reference trajectory influences the
dynamic behavior at the end-effector in two ways. First by
determining the configuration at a given point in the task,
the apparent inertia at the end-effector is co-determined
(Hogan 1985b; Khatib 1995; Sciavicco and Siciliano
2000b), and second by possibly purposefully using a ref-
erence trajectory which is far from the actually followed
trajectory (e.g. as in indirect force control (Siciliano and
Villani 2000) where the desired force is achieved by putting
the end-effector reference trajectory within the object).

6.3. Optimal control

In optimal control and model-based RL, Differential
Dynamic Programming (DDP) (Jacobson and Mayne 1970)
has been one of the most established and most commonly
used frameworks for finite horizon optimal control prob-
lems. In DDP, both state space dynamics and cost function
are approximated up to the second order. The assumption
of stabilizability and detectability for the local approxima-
tion of the dynamics are necessary for the convergence of
DDP. The resulting state space trajectory is locally optimal,
while the corresponding control policy consists of open-
loop feedforward commands and closed-loop gains relative
to a nominal and optimal reference trajectory. This charac-
teristic allows the use of DDP for both planning and gain
scheduling problems. Fletcher (1981) and Yakowitz (1986)
extended DDP to incorporate constraints in state and con-
trols. Lantoine and Russell (2008) suggest computational
improvements to constrained DDP and apply the proposed
algorithm to a low-dimensional planning problem.

An example of a DDP application to robotics is presented
in Morimoto and Atkeson (2002). In this work, a min—max
or Differential Game Theory approach to optimal control
is proposed. There is a strong link between robust con-
trol frequency design analysis such as Hy, control and the
framework of Differential Game Theory (Basar and Bern-
hard 1995). Essentially the min—max DDP results in robust
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feedback control policies with respect to model uncertainty
and unknown dynamics. Although, in theory, min—max
DDP should resolve the issue of model uncertainty, it can
lead to overly conservative control policies. The conser-
vatism results from the need to guarantee that the game
theoretic approach will be always stabilizable, i.e. mak-
ing sure that the stabilizing controller wins. For linear and
time invariant systems, such guarantee is feasible through
y-iteration (Vincent and Grantham 1997). However, for
nonlinear systems, providing this guarantee is not trivial.

The work on Receding Horizon DDP (Tassa et al. 2008)
provided an alternative and rather efficient way of comput-
ing local optimal feedback controls. Nevertheless, all of
the computations of optimal trajectories and control take
place offline and the model predictive component is only
due to the fact that the final target state of the optimal
control problem varies. Recent work on Linear Quadratic
Regulator (LQR) trees uses a simpler variation of DDP,
the iterative Linear Quadratic Regulator (iLQR) (Li and
Todorov 2004), which is based on linear approximations of
the state space dynamics, in combination with tools from
Nonlinear Robust Control theory for region of attraction
analysis. Given the local optimal feedback control policies,
the sums of squares optimization scheme is used to quantify
the size of the basin of attraction, and provides so-called
control funnels. These funnels improve sampling since they
quantize the state space into attractor regions placed along
the trajectories towards the target state. This is a model-
based approach and thus suffers from many of problems
of model-based approaches to optimal control. In addition,
even though sampling is improved, it is still an issue how
LQR trees scale in high-dimensional dynamical systems.

The path integral formalism for optimal control was
introduced by Kappen (2005a,b). In this work, the role
of noise in symmetry breaking phenomena was investi-
gated in the context of stochastic optimal control. Broek
et al. (2008) extended the path integral formalism for
stochastic optimal control of multi-agent systems, which is
not unlike our multi-DOF control systems.

Recent work on stochastic optimal control by Todorov
(2008, 2007, 2009) shows that for a class of discrete
stochastic optimal control problems, the Bellman equation
can be written as the Kullback—Leibler (KL) divergence
between the probability distribution of the controlled and
uncontrolled dynamics. Furthermore, it is shown that the
class of discrete KL divergence control problem is equiva-
lent to the continuous stochastic optimal control formalism
with quadratic cost control function and under the presence
of Gaussian noise. In all of this aforementioned work, both
in the path integral formalism as well as in KL divergence
control, the class of stochastic dynamical systems under
consideration is rather restrictive since the control transi-
tion matrix is state independent. Moreover, the connection
to direct policy learning in RL and model-free learning was
not made in any of the previous projects. Todorov (2009)
investigated the stochastic optimal control problem for

discrete state—action spaces, and therefore it is treated as a
Markov Decision Process (MDP).

As was demonstrated, to apply our PI?> algorithm, we
do not discretize the state space and we do not treat the
problem as an MDP. Instead we work in continuous state—
action spaces which are suitable for performing RL in high-
dimensional robotic systems. To the best of the authors’
knowledge, our results present RL in one of the most
high-dimensional continuous state—action spaces.

In our derivations, the probabilistic interpretation of con-
trol comes directly from the Feynman-Kac Lemma. Thus,
we do not have to impose any artificial pseudo-probability
treatment of the cost as in Todorov (2009). In addition, for
continuous state—action spaces, we do not have to learn
the value function as it is suggested in Todorov (2009) via
Z-learning. Instead we directly obtain the controls based
on our generalization of optimal controls. In the previous
work, the problem of how to sample trajectories is not
addressed. Sampling is performed with the hope to cover
all of the relevant state space. We follow a rather different
approach by incremental updating, which allows us to
address robotic learning problems of the complexity and
dimensionality of complete humanoid robots.

6.4. Reinforcement learning

In contrast to policy gradient methods (Peters 2007), in PI?
there is no need to explicitly calculate a gradient, which
is usually sensitive to noise and large derivatives in the
value function. Essentially the gradient of the exponentiated
value function VW is implicitly calculated by a weighted
average of the exploration parameter ¢ weighted by the
exponentiated cost of every sampled trajectory (the last
step in Table 1). This computation is robust to non-smooth
dynamics and cost functions. As is shown in Section 5.2.1,
PI? performs RL under Boolean cost functions which are
introduced either to incorporate contact with objects or to
encode success and failure modes in motor tasks. Thus PI?
is robust to non-smooth cost functions since it does rely
on quadratic approximations of them as model-based RL
methods (Jacobson and Mayne 1970).

With respect to previous work on path integral control
(Kappen 2005a,b), in PI? the exploration of the state space
is done with the propagation of DMPs, rather than sampling
the whole state space. For high-dimensional problems, it is
simply not possible to sample the whole state space.

The differences discussed above enable PI?> to outper-
form previous RL algorithms for parameterized policy
learning by at least one order of magnitude in learning
speed and also lower final cost performance, as demon-
strated in Theodorou et al. (2010a,b). It also scales up to
high-dimensional spaces, which enables PI? to learn full-
body humanoid motor skills with over 30 DOFs (Stulp et al.
2010). As an additional benefit, PI> has no open algorith-
mic parameters, except for the magnitude of the exploration
noise €; (the parameter X is set automatically, cf. Theodorou
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et al. (2010a)). It is a model-free reinforcement learning
algorithm in the sense that it does not require knowledge
of the model of the control system or the environment for
the learning of an optimal control policy.

In the approach of Kormushev et al. (2010), a robot
learns the coupling between the different DOFs of a robot,
to learn synergies across the different dimensions. These
couplings are learned with the POWER algorithm (Kober
and Peters 2009), on a representation very similar to DMPs.
The initial DMP is acquired through kinesthetic teaching.
The output of the motion primitive, desired accelerations,
is converted into torque commands using inverse dynam-
ics and PD control. Rather than learning couplings between
joints, we learn variable gain schedules for each joint. Also,
PI? enables us to use much simpler cost functions for spec-
ifying whether the task is achieved. In the case of the light
switch flipping task, it is a simple Boolean function that
specifies whether the flip was switched or not. This makes
it easier for non-expert users to provide feedback.

7. Conclusion

We presented a model-free reinforcement learning
approach that can learn variable impedance control for
robotic systems. Our approach is derived from stochastic
optimal control with path integrals, a relatively new
development that transforms optimal control problems
into estimation problems. In particular, PI*> goes beyond
the original ideas of optimal control with path integrals
by realizing the applicability to optimal control with
parameterized policies and model-free scenarios.

The mathematical structure of the PI?> algorithm makes
it suitable to optimize simultaneously both reference trajec-
tories and gain schedules. This is similar to classical DDP
methods, but completely removes the requirements of DDP
that the model of the controlled system must be known, that
the cost function has to be twice differentiable in both state
and command cost, and that the dynamics of the control
system have to be twice differentiable. The latter constraints
make it hard to apply DDP to tasks with discrete events, as
is typical in force control and locomotion.

We evaluated our approach on three simulated robot sys-
tems and one real robot, which posed up to 14-dimensional
learning problems in continuous state—action spaces. The
goal was to learn compliant control while fulfilling
kinematic task constraints, such as passing through an
intermediate target. The evaluations demonstrated that the
algorithm behaves as expected: it increases gains when
needed, but tries to maintain low-gain control otherwise.
The optimal reference trajectory always fulfilled the task
goal. Learning speed was rather fast, i.e. within at most a
few hundred roll-outs, the task objective was accomplished.
From a machine learning point of view, this performance of
a reinforcement learning algorithm is very fast.

The PI’> algorithms inherits the properties of all
trajectory-based learning algorithms in that it only finds

locally optimal solutions. For high-dimensional robotic sys-
tems, this is unfortunately all one can hope for, as exploring
the entire state—action space in search for a globally optimal
solution is impossible.

Future work aims at applying these methods to actual
robots for mobile manipulation and locomotion controllers.
We believe that our methods are a major step towards real-
izing compliant autonomous robots that operate robustly in
dynamic, stochastic environments, without harming other
beings or themselves.

Notes

1. Equation (4) is using a shorthand notation E, for the expecta-
tion of the finite horizon cost R(z;). The finite horizon cost is a
random variable with probability distribution p(z;|uy;:sy) and
therefore E7; [R(7) ] = [ p(tilug:sy) R(i) dv;. Here uyzy is
a ‘parameter’ influencing the probability distribution and ulti-
mately the value of the expectation, used in defining the value
function. Therefore, minimization has to happen with respect
to this parameter.

2. In the final algorithm the parameter X is set automatically, cf.
Theodorou et al. (2010a).

3. During learning, we bound the gains between pre-specified
maximum and minimum values. Too high gains would gen-
erate oscillations and can lead to instabilities of the robot,
and too low gains lead to poor tracking such that the robot
frequently runs into the joint limits. This also keeps the
exploration algorithm from generating negative gains.

4. The relatively high exploration noise for the joint trajectories
does not express less exploration per se, but is rather due to
numerical differences in using the function approximator to
model the gains directly (Equation (21)) rather than as the
non-linear component of a DMP (Equation (14)).
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