


III. THE STOMP ALGORITHM

Traditionally, motion planning is defined as the problem of

finding a collision-free trajectory from the start configuration

to the goal configuration. We treat motion planning as an

optimization problem, to search for a smooth trajectory that

minimizes costs corresponding to collisions and constraints.

Specifically, we consider trajectories of a fixed duration T ,

discretized into N waypoints, equally spaced in time. In

order to keep the notation simple, we first derive the algo-

rithm for a 1-dimensional trajectory; this naturally extends

later to multiple dimensions. This 1-dimensional discretized

trajectory is represented as a vector θ ∈ R
N . We assume

that the start and goal of the trajectory are given, and are

kept fixed during the optimization process.

We now present an algorithm that iteratively optimizes

this discretized trajectory, subject to arbitrary state-dependent

costs. While we keep the cost function general in this section,

Section IV discusses our formulation for obstacle, constraint,

energy, and smoothness costs. We start with the following

optimization problem:

min
θ̃

E

[

N
∑

i=1

q(θ̃i) +
1

2
θ̃

T

Rθ̃

]

(1)

where θ̃ = N (θ,Σ) is a noisy parameter vector with

mean θ and variance Σ. q(θ̃i) is an arbitrary state-dependent

cost function, which can include obstacle costs, constraints

and torques. R is a positive semi-definite matrix representing

control costs. We choose R such that θT
Rθ represents the

sum of squared accelerations along the trajectory. Let A

be a finite differencing matrix that when multiplied by the

position vector θ, produces accelerations θ̈:

A =























1 0 0 0 0 0
−2 1 0 · · · 0 0 0
1 −2 1 0 0 0

...
. . .

...

0 0 0 1 −2 1
0 0 0 · · · 0 1 −2
0 0 0 0 0 1























(2)

θ̈ = Aθ (3)

θ̈
T

θ̈ = θ
T(AT

A)θ (4)

Thus, the selection of R = A
T
A ensures that θT

Rθ repre-

sents the sum of squared accelerations along the trajectory.

Previous work [9] has demonstrated the optimization of

the non-stochastic version of Eqn. 1 using covariant func-

tional gradient descent techniques. In this work, we instead

optimize it using a derivative-free stochastic optimization

method. This allows us to optimize arbitrary costs q(θ̃) for

which derivatives are not available, or are non-differentiable

or non-smooth.

Taking the gradient of the expectation in Eqn. 1 with

respect to θ̃, we get:

∇
θ̃

(

E

[

N
∑

i=1

q(θ̃i) +
1

2
θ̃

T

Rθ̃

])

= 0 (5)

which leads to:

E

(

θ̃

)

= −R
−1

∇
θ̃

(

E

[

N
∑

i=1

q(θ̃i)

])

(6)

Further analysis results in:

E

(

θ̃

)

= −R
−1

E

(

∇
θ̃

[

N
∑

i=1

q(θ̃i)

])

(7)

The expression above can be written in the form E

(

θ̃

)

=

−R
−1δ̂θG where δ̂θG is now the gradient estimate defined

as follows:

δθ̂G = E

(

∇
θ̃

[

N
∑

i=1

q(θ̃i)

])

(8)

Previous approaches [9] have used the analytical func-

tional gradient to derive an iterative gradient descent update

rule. While this may be efficient, it requires a cost function

that is smooth and differentiable. Moreover, even though this

has not been proposed [9], for a given cost function J(θ) the

positive definiteness condition of the hessian ∇θθJ(θ) > 0
is required to guarantee convergence. Our proposed gradient

estimation is motivated by the limitations of gradient based

optimization when it comes to non-differentiable or non-

smooth cost functions. Inspired by previous work in the

probability matching literature [10] as well as recent work

in the areas of path integral reinforcement learning [11], we

propose an estimated gradient formulated as follows:

δθ̂G =

∫

δθ dP (9)

Essentially, the equation above is the expectation of δθ
(the noise in the parameter vector θ̃) under the probability

metric P = exp
(

− 1
λ
S(θ̃)

)

where S(θ̃) is the state de-

pendent cost defined on the trajectory and it is designed as

S(θ̃) =
[

∑N

i=1 q(θ̃i)
]

. Thus the stochastic gradient is now

formulated as follows:

δθ̂G =

∫

exp

(

−
1

λ
S(θ)

)

δθ d(δθ) (10)

Even though our optimization procedure is static in the

sense that it does not require the execution of a trajectory

rollout, our gradient estimation process has strong connection

to how the gradient of the value function is computed in

the path integral stochastic optimal control framework [11].

More precisely the goal in the framework of stochastic

optimal control is to find optimal controls that minimize

a performance criterion. In the case of the path integral

stochastic optimal control formalism, these controls are

computed for every state xti as δû =
∫

p(x)δu where

δu are the sampled controls and p(x) corresponds to the



5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

5 10 15 20 25 30 35 40 45
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(a) (b)

Fig. 2. (a) Each curve depicts a column/row of the symmetric matrix R−1.
(b) 20 random samples of ǫ, drawn from a zero mean normal distribution
with covariance Σǫ = R−1.

TABLE I

THE STOMP ALGORITHM

• Given:

– Start and goal positions x0 and xN

– An initial 1-D discretized trajectory vector θ
– An state-dependent cost function q(θi)

• Precompute:

– A = finite difference matrix (Eqn 2)
– R−1 = (ATA)−1

– M = R−1, with each column scaled such that the maximum
element is 1/N

• Repeat until convergence of trajectory cost Q(θ):

1) Create K noisy trajectories, θ̃1 . . . θ̃K with parameters θ+ǫk ,
where ǫk = N (0,R−1)

2) For k = 1 . . .K, compute:

a) S(θ̃k,i) = q(θ̃k,i)

b) P
(

θ̃k,i

)

= e
−

1
λ

S(θ̃k,i)

∑
K
l=1

[e
−

1
λ

S(θ̃l,i)]

3) For i = 1 . . . (N −1), compute: [δ̃θ]i =
∑K

k=1 P (θ̃k,i)[ǫk]i
4) Compute δθ = Mδ̃θ
5) Update θ ← θ + δθ
6) Compute trajectory cost Q(θ) =

∑N
i=1 q(θi) +

1
2
θ

T
Rθ

probability of every trajectory τ i starting from xti and

ending in the terminal state xtN . This probability is defined

as p(x) = exp (−S(τ i)) with S(τ i) being the cost of the

path τ i = (xti, ...,xtN ). Thus, p(x) is inversely proportional

to the cost S(τ i) and therefore paths with higher cost will

have a lower contribution to the optimal controls than paths

with lower cost. The process above is repeated for every state

xti until the terminal xtN (multistage optimization). Then

the controls are updated according to u = u + δû and new

trajectories are generated. In our case, we assume that each

state cost q(θi) is purely dependent only on the parameter

θi, and we do not blame future or past costs on the current

state. Hence, we simplify the problem by defining a local

trajectory cost S(θi) = q(θi), i.e., we remove cumulation of

costs. We find that this simplification significantly accelerates

convergence in the experiments presented in Sec. V.

The final update equations for STOMP are presented

in Table I. There are a few points which warrant further

discussion:

A. Exploration

In order to keep control costs of noisy trajectories low, we

sample the noise ǫ from a zero mean normal distribution,

with Σǫ = R
−1 as the covariance matrix, as shown in

Figure 2(b). This is preferable to sampling with Σ = I

for several reasons: (1) samples ǫ have a low control cost

ǫ
T
Rǫ, and thus allow exploration of the state space without

significantly impacting the trajectory control cost; (2) these

noisy trajectories may be executed without trouble on a

physical system; (3) the samples do not cause the trajectory

to diverge from the start or goal. Goal-convergent exploration

is highly desirable in trajectory-based reinforcement learning

of point to point movements, where dynamical systems have

been designed that satisfy this property [12].

B. Trajectory updates

After generating K noisy trajectories, we compute their

costs per time-step S(θk, i) (Table I, Step 2(a)). In Step

2(b), we compute the probabilties P (θk, i) of each noisy

trajectory, per time-step. The parameter λ regulates the sen-

sitivity of the exponentiated cost, and can be automatically

optimized per time-step to maximally discriminate between

the experienced costs. We compute the exponential term in

Step 2(b) as:

e−
1
λ
S(θk,i) = e

−h
S(θk,i)−minS(θk,i)

maxS(θk,i)−minS(θk,i) , (11)

with h set to a constant, which we chose to be h = 10 in

all our evaluations. The max and min operators are over all

noisy trajectories k. The noisy update for each time-step is

then computed in Step 3 as the probability-weighted convex

combination of the noisy parameters for that time-step.

Finally, in Step 4, we smooth the noisy update using the

M matrix, before updating the trajectory parameters in Step

5. The M matrix is formed by scaling each column of R−1

(shown in Figure 2(a)) such that the highest element in the

column has a magnitude 1/N . This scaling ensures that no

updated parameter exceeds the range that was explored in

the noisy trajectories. Multiplication with M ensures that

the updated trajectory remains smooth, since it is essentially

a projection onto the basis vectors of R
−1 shown in Fig-

ure 2(a).

These trajectory updates can be considered safer than a

standard gradient descent update rule. The new trajectory is

essentially a convex combination of the noisy trajectories

which have already been evaluated, i.e. there are no un-

expected jumps to unexplored parts of the state space due

to a noisy gradient evaluation. Our iterative update rule is

analogous to an expectation-maximization (EM) algorithm,

in which we update the mean of our trajectory sampling

distribution to match the distribution of costs obtained from

sampling in the previous iteration. This procedure guarantees

that the average cost is non-increasing, if the sampling is

assumed to be dense [10], [13]. An additional advantage is

that no gradient step-size parameter is required; the only

open parameter in this algorithm is the magnitude of the

exploration noise.

IV. MOTION PLANNING FOR A ROBOT ARM

In this section, we discuss the application of the stochastic

trajectory optimization algorithm in Table I to the problem

of motion planning of a high-dimensional robot manipulator.







50 100 150 200
0

200

400

600

Iteration number

T
ra

je
ct

o
ry

 c
o

st

 

 

Trajectory cost

± 1 standard deviation

1 2 3 4

35

40

45

50

55

Time (sec)

S
u

m
 o

f 
ab

s.
 j

o
in

t 
to

rq
u

es
 (

N
m

)

 

 
No torque opt.

Torque opt.

(a) (b)

Fig. 5. (a) Iterative evolution of trajectory costs for 10 trials of STOMP on
a constrained planning task. (b) Feed-forward torques used in the planning
problem shown in Figure 4, with and without torque optimization, averaged
over 10 trials.

on the Willow Garage PR2 robot.

C. Code, Replication of Results

All of the software written for this work has been pub-

lished under the BSD open source license, and makes use of

the Robot Operating System (ROS) [17]. Further instructions

on installing the software and replicating the results in this

paper can be found at [18].

VI. DISCUSSION

A Hamiltonian Monte Carlo variant of CHOMP is dis-

cussed in [9], [19], as a principled way of introducing

stochasticity into the CHOMP gradient update rule. While

theoretically sound, we found this method difficult to work

with in practice. It introduces additional parameters which

need to be tuned, and requires multiple random restarts

to obtain a successful solution. In contrast, our algorithm

requires minimal parameter tuning, does not need cost func-

tion gradients, and uses a stable update rule which under

certain assumptions guarantees that the average cost is non-

increasing.

VII. CONCLUSIONS

We have presented an algorithm for planning smooth

trajectories for high-dimensional robotic manipulators in the

presence of obstacles. The planner uses a derivative-free

stochastic optimization method to iteratively optimize cost

functions that may be non-differentiable and non-smooth. We

have demonstrated the algorithm both in simulation and on

a mobile manipulator, for obstacle avoidance, optimization

of task constraints and minimization of motor torques used

to execute the trajectory.

A possibility for future work is to augment this local

trajectory optimizer with a trajectory library approach, which

can recall previous trajectories used in similar situations, and

use them as a starting point for futher optimization [20].

The STOMP algorithm could also be applied to problems

in trajectory-based reinforcement learning, where costs can

only be measured by execution on a real system; we intend

to explore these avenues in future work.

ACKNOWLEDGEMENTS

This research was conducted while Mrinal Kalakrish-

nan and Peter Pastor were interns at Willow Garage. This

research was additionally supported in part by National

Science Foundation grants ECS-0326095, IIS-0535282,

IIS-1017134, CNS-0619937, IIS-0917318, CBET-0922784,

EECS-0926052, CNS-0960061, the DARPA program on

Advanced Robotic Manipulation, the Army Research Office,

the Okawa Foundation, and the ATR Computational Neuro-

science Laboratories. Evangelos Theodorou was supported

by a Myronis Fellowship.

REFERENCES

[1] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J.
Kuffner, “Manipulation planning with workspace goal regions,” in
IEEE International Conference on Robotics and Automation, May
2009.

[2] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. J. Kuffner.,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:

Science and Systems, Zurich, Switzerland 2008.
[3] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion

planning for humanoid robots,” in In Proc. 20th Int’l Symp. Robotics

Research (ISRR’03), 2003.
[4] R. B. Rusu, I. A. Şucan, B. Gerkey, S. Chitta, M. Beetz, and L. E.

Kavraki, “Real-time perception guided motion planning for a personal
robot,” in International Conference on Intelligent Robots and Systems,
St. Louis, USA, October 2009.

[5] I. A. Şucan, M. Kalakrishnan, and S. Chitta, “Combining planning
techniques for manipulation using realtime perception,” in IEEE

International Conference on Robotics and Automation, Anchorage,
Alaska, May 2010.

[6] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Ma-
nipulation planning on constraint manifolds,” in IEEE International

Conference on Robotics and Automation, May 2009.
[7] K. Hauser and V. Ng-Thow-Hing, “Fast Smoothing of Manipulator

Trajectories using Optimal Bounded-Acceleration Shortcuts,” in IEEE

International Conference on Robotics and Automation, 2010.
[8] J. P. Desai and V. Kumar, “Motion planning for cooperating mobile

manipulators,” Journal of Robotic Systems, vol. 16(10), pp. 557–579,
1999.

[9] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gra-
dient optimization techniques for efficient motion planning,” in IEEE

International Conference on Robotics and Automation, 2009, pp. 12–
17.

[10] P. Dayan and G. E. Hinton, “Using em for reinforcement learning,”
Neural Computation, vol. 9, 1997.

[11] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of
motor skills in high dimensions: a path integral approach,” in IEEE

International Conference on Robotics and Automation, 2010.
[12] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor

landscapes for learning motor primitives,” in Advances in Neural

Information Processing Systems 15. MIT Press, 2002, pp. 1547–
1554.

[13] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Fitness expec-
tation maximization,” Parallel Problem Solving from Nature–PPSN X,
pp. 337–346, 2008.

[14] Q. Ye, “The signed Euclidean distance transform and its applications,”
in 9th International Conference on Pattern Recognition, 1988., 1988,
pp. 495–499.

[15] R. Featherstone, Rigid body dynamics algorithms. Springer-Verlag
New York Inc, 2008.

[16] L. Zhang, X. Huang, Y. Kim, and D. Manocha, “D-plan: Efficient
collision-free path computation for part removal and disassembly,”
Journal of Computer-Aided Design and Applications, vol. 5, no. 6,
pp. 774–786, 2008.

[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in International Conference on Robotics and Automation,
ser. Open-Source Software workshop, 2009.

[18] “STOMP: Stochastic trajectory optimization for motion planning,”
http://www.ros.org/wiki/Papers/ICRA2011 Kalakrishnan.

[19] N. D. Ratliff, “Learning to search: structured prediction techniques
for imitation learning,” Ph.D. dissertation, Carnegie Mellon University,
2009.

[20] N. Jetchev and M. Toussaint, “Trajectory Prediction in Cluttered Voxel
Environments,” in IEEE International Conference on Robotics and

Automation, 2010.


